Expansions of Heyting algebras
نویسنده
چکیده
It is well-known that congruences on a Heyting algebra are in one-to-one correspondence with filters of the underlying lattice. If an algebra A has a Heyting algebra reduct, it is of natural interest to characterise which filters correspond to congruences on A. Such a characterisation was given by Hasimoto [1]. When the filters can be sufficiently described by a single unary term, many useful properties are uncovered. The traditional example arises from boolean algebras with operators. In this setting, an algebra B = 〈B;∨,∧,¬, {fi | i ∈ I}, 0, 1〉 is a boolean algebra with (dual) operators (BAO for short) if 〈B;∨,∧,¬, 0, 1〉 is a boolean algebra, and for each i ∈ I, the operation fi is a unary map satisfying fi1 = 1 and fi(x ∧ y) = fix ∧ fiy. If B is of finite type, then congruences on B are determined by filters closed under the map d, defined by
منابع مشابه
Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کاملOn some classes of expansions of ideals in $MV$-algebras
In this paper, we introduce the notions of expansion of ideals in $MV$-algebras, $ (tau,sigma)- $primary, $ (tau,sigma)$-obstinate and $ (tau,sigma)$-Boolean in $ MV- $algebras. We investigate the relations of them. For example, we show that every $ (tau,sigma)$-obstinate ideal of an $ MV-$ algebra is $ (tau,sigma)$-primary and $ (tau,sigma)$-Boolean. In particular, we define an expansion $ ...
متن کاملPreserving Filtering Unification by Adding Compatible Operations to Some Heyting Algebras
We show that adding compatible operations to Heyting algebras and to commutative residuated lattices, both satisfying the Stone law ¬x∨¬¬x = 1, preserves filtering (or directed) unification, that is, the property that for every two unifiers there is a unifier more general then both of them. Contrary to that, often adding new operations to algebras results in changing the unification type. To pr...
متن کاملOn Heyting algebras and dual BCK-algebras
A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended ∨-De Morgan law introduced in [20]. Then, using this result and the results of [20], we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) in the variety o...
متن کامل